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Ratcheted Random Search for
Self-Programming Boolean Networks

Lee SpeCtOI'[OOOO_OOOl —5299-4797]

Abstract Random Boolean networks exhibit a variety of properties that are charac-
teristic of natural adaptive systems. This suggests that Boolean networks may provide
a useful substrate for artificial systems that adapt to solve specified problems. In this
chapter I describe an investigation of the capacity of Boolean networks to represent
solutions to computational problems and the efficacy of simple stochastic algorithms
for finding problem-solving Boolean networks. Because prior work noted that the
properties of Boolean networks depend on the set of permitted gate types, I consider
here networks constructed only of programmable gates that can be configured to act
as any 2-input Boolean gate. Networks of these gates are self-programming because
the function of each gate is determined dynamically from its configuration inputs. I
consider search algorithms that find self-programming networks through processes
of random rewiring, random gate additions, random gate deletions, and a ratchet
mechanism that only permits moves in the search space that maintain or increase
training case coverage. I present networks found by this algorithm and discuss the
implications of these results for future work.

1.1 Introduction

Starting in 1969, Stuart Kauffman and subsequently others have explored the prop-
erties of randomly-wired networks of Boolean gates. Much of this work has been
motivated by an interest in illustrating features of genetic regulatory networks and
other complex biological systems [7, 21, 8, 9, 3]. Among the features of random
Boolean networks that have been the focus of this work are the spontaneous emer-
gence of order, attractors with modest cycle lengths in spite of the enormous state
spaces in which they occur, dynamics that can be tuned to the “edge of chaos” to
facilitate adaptation, and resilience to perturbation.
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One suggestion raised by this research, and explored to some extent in prior work,
is that Boolean networks may be useful as targets of adaptive processes that aim to
produce executable structures that solve specified problems. For example, Kauffman
considered the effects of wire-moving mutations and the prospects for adaptive walks
through the space of wirings to find attractors with particular patterns of activation for
specified subsets of gates [8]. Lemke et al. presented a more thorough numerical study
of adaptation in populations of Boolean networks evolved using genetic algorithms
[10], again in the context of finding networks with attractors matching specified
patterns. East and Rowe considered the use of Kauffman’s Boolean networks in
the developmental mechanisms of a system that evolved problem-solving neural
networks [2]. Gershenson described methods for guiding the self-organization of
random Boolean networks to different regimes of network dynamics [4]. Although
this and other related work has revealed and to some extent exploited interesting
features of Boolean networks, it does not appear that work on these approaches
has yet provided a robust technology for finding Boolean networks that compute
specified functions.

Separately, work on evolvable hardware and Cartesian genetic programming has
produced methods that can find Boolean circuits that compute specified functions
[12,13,19, 18,5, 16]. Most of this work has focused on finding combinatorial circuits,
which cannot have cycles and hence cannot exhibit the attractor dynamics that has
driven interest in Boolean networks. Prior work on finding sequential circuits, which
may have cycles, has focused on the evolution of circuits with highly constrained
architectures for sequential processing [1, 15]. Little work appears to have been done
so far on the adaptation of unconstrained Boolean networks to compute specified
functions that map Boolean inputs to Boolean outputs.

The present study aims to take initial steps in the filling of this gap, by exploring
the search for unconstrained Boolean networks that compute functions of interest.
I assume a problem environment in which an input consists of some fixed number
of Boolean values, and in which an output consists of some possibly different fixed
number of Boolean values.

Because the goal at this stage is to uncover basic principles of search for networks
that implement target functions, choices of representations and algorithms have been
made with primary attention to considerations of simplicity, generality and unifor-
mity. One choice reflecting this priority is that I consider here only networks made
of one kind of gate, a “programmable” gate that can act as any 2-input Boolean gate.
This is in contrast to prior work that considered heterogeneous networks composed
of gates chosen from a specified set such as {AND, OR, NOT}. Another choice re-
flecting my focus on basic principles is that I consider only search methods that
sequentially modify a single network until it meets the target specification. Relative
to approaches based on more sophisticated methods such as genetic algorithms, this
avoids complexities such as those introduced by interactions within populations. It is
possible that future work will determine that the most effective search algorithms take
advantage of such complexities, but because my current goal is to understand fun-
damental features of the search space I aim for simplicity, generality, and uniformity
when possible here.
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In the following sections I describe the programmable gate out of which the
networks that I will consider are constructed, preliminary observations about the
behavior of self-programming Boolean networks, and the ways in which networks of
these gates can be used to compute functions from inputs to outputs. I then describe
the search method that I use to find networks that satisfy particular input/output
specifications, and I present results of preliminary experiments using this search
algorithm. I conclude with some general observations and suggestions for future
work.

1.2 Programmable Gates

Prior work on random Boolean networks showed that a variety of network properties
depend in critical ways on the subset of possible gate types that one allows to be
used in the networks. In the interest of simplicity, generality, and uniformity I have
chosen here to use only a single type of gate that can be configured to act as any
2-input Boolean gate.

The function of a 2-input Boolean gate can be specified using a truth table, the
right-most column of which indicates the output for each possible combination of
input values. For example, the right-most column of the truth table shown in Table
1.1 specifies the behavior of an AND gate.

Table 1.1 The truth table an AND gate, shown using O for false and 1 for true.
A B OUT
0
0
1
1

—_—0 = O

0
0
0
1

A programmable 2-input gate takes four additional inputs, the values of which
specify the right-most column of the truth table for the Boolean function that the gate
will implement. For example, if the values of the four additional inputs are false,
false, false, and true, then the gate will act as an AND gate of the original two
inputs. As will be useful for execution traces presented below, the right-most column
of the truth table can be notated with a single hexadecimal digit by first considering
it to be a binary number with the most significant bit on top. Using this convention,
the AND gate is notated as 1; the hexadecimal notation for all 2-input Boolean gates
is shown in Table 1.2.
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Table 1.2 Hexadecimal notation for all 2-input Boolean gates. The first four columns show the
right-most column of the gate’s truth table, using O for false and 1 for true. The column header
“FF” indicates that the value provides the output of the gate when the A and B inputs are both true,
while the “FT” header means that the value provides the output when the A input is false and the
B input is true, and so on. The “Hex” column shows the hexadecimal notation for the gate with
that truth table. The “Gate” column provides a common description for that gate, assuming that the
first input is A and the second input is B.

FF FT TF TT |Hex|Gate

FALSE
AND
AN-B
A
BA-A
B

XOR

OR

NOR

-B
B = A
-A
A= B
NAND
TRUE

—_—m e, mm—m,OO0OCOOCOO
—_———o 00O~~~ —~OCOO
=R = T N I I R Y
—_ O~ O~ O~ O~ O =0 —O —O

HEHTOAOEPORIA N R W=D

The truth table for the programmable gate is shown in Table 1.3.

The programmable gate is equivalent to the well known 4-to-1 multiplexer [20],
which also takes a total of six inputs and is generally discussed as using two of
the inputs to specify which of the other four inputs will appear at the output.!
This turns out to be equivalent to using the latter four inputs to specify the truth
table of the Boolean function applied to the original two inputs. Figure 1.1 shows the
standard graphical representation for a 4-to-1 multiplexer, while Figure 1.2 shows my
preferred graphical representation for the programmable gate. The gates are identical
in function, but I prefer the “programmable” terminology and the representation in
Figure 1.2 because they remind us that this gate can act as any 2-input Boolean gate,
with the choice of gate being specified by additional inputs.

! Thanks to Bill Tozier for pointing this out. Ohers have studied the evolution of circuits composed
of multiplexers (e.g. [11]), but not, so far as I know, for the production of unconstrained Boolean
networks.
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Table 1.3 The truth table for the programmable 2-input Boolean gate, which is equivalent to that

for a 4-to-1 multiplexer, shown using O for false and 1 for true. The column header “FF” indicates
that the value provides the output of the gate when the A and B inputs are both true, while the “FT”

header means that the value provides the output when the A input is false and the B input is true,

and so on.

ouT

B

FF FT TF TT A

(=Rl
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A B
FF
FT
ouT
. . TF
Fig. 1.1 A 4-to-1 multiplexer
with inputs FF, FT, TF and TT TT
and switching bits A and B.
FF FT TF TT
Fig. 1.2 A programmable A
2-input Boolean gate with ouT

inputs A and B and truth table B
defined by FF, FT, TF and TT.

1.3 Self-Programming Networks

A self-programming Boolean network of a specified size can be created by creating
the specified number of programmable gates and then wiring each input of each gate
to the output of a randomly chosen gate. Although various network update schemes
might be considered, I consider here only synchronous updates in which all gates
simultaneously determine their states for step s + 1 by using the values of the state
at step s as inputs. Note that this means that the execution of a network is entirely
deterministic. While I am looking here at randomly wired networks, and I will later
consider random processes for finding networks that behave in certain ways, there is
nothing random in the execution of a network once it has been created.

One set of questions that immediately arises concerns the dynamics of random
self-programming Boolean networks. What will they generally be like? Although
studies have been conducted of the dynamics of networks of various types of Boolean
gates, I am not aware of studies of networks of programmable gates in particular.

As a preliminary step in the study of these networks I generated 10, 000 networks
of each size from 1 to 100 gates and ran each from a random initial state until a
state was repeated, meaning that the network had entered a cycle. I then reported
the length of the cycle. Figure 1.3 shows the mean cycle length for each number of
gates, while Figure 1.4 shows the maximum observed cycle length for each number
of gates.

From results reported by Kauffman one might expect the dynamics of networks
of 6-input gates with true/false-balanced outputs to be quite chaotic, since he reports
a tendency for chaotic dynamics in networks in which gates have more than two
inputs (K > 2, in his terminology) and also in which gates have balanced outputs
(P = 0.5 in his terminology). Nonetheless, the behavior of the specific gate used
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here appears to be more manageable, with mean cycle lengths growing modestly
with the number of gates. Even for networks of 100 gates, for which the size of
the state space is 2'%° > 10°°, one can expect convergence to an attractor cycle—a
sequence of network states that henceforth repeats forever—of fewer than six steps.
Maximum cycle lengths are subject to outliers in the thousands, but even so their
growth is modest in comparison to state space size. For all network sizes the median
cycle length was 1.

Although the dynamics seen here are encouraging, they reflect the behavior of
randomly initialized networks. When we use networks to compute functions from
inputs to outputs initial states will presumably be determined by inputs, and may be
constrained. This may change the range of dynamics that we can expect to observe.

Mean cycle length

0 \ \ \ \
20 40 60 80 100

Number of gates

Fig. 1.3 Mean cycle lengths for random networks of programmable gates. For each plotted point
10,000 random networks of the specified size were created, initialized randomly, and run until a
state was repeated.

In order to use a self-programming Boolean network as a function that maps inputs
to outputs the model is augmented with additional input sources and a convention
for extracting outputs. Specifically, when working on a problem involving i Boolean
inputs, i + 2 sources are added for wires to gate inputs beyond those provided by the
outputs of the gates in the network. i of the added sources are set to provide the values
of the corresponding inputs, held constant throughout the process of determining the
network’s outputs for those inputs. The other two added sources provide constant
values of true and false. Note that this means that it is possible to wire a self-
programming Boolean network to act as a network of standard 2-input gates, by
wiring all of the programming inputs of all of the gates to constants. On the other
hand, if the programming inputs of gates are wired to the outputs of other gates then
more complex behaviors may result.
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Fig. 1.4 Maximum cycle lengths for random networks of programmable gates. For each plotted
point 10,000 random networks of the specified size were created, initialized randomly, and run until
a state was repeated.

Outputs are taken from pre-specified gates in the network, so a network for a
problem involving u output bits must include at least u gates that are pre-specified
to serve as outputs. I refer to gates that are not designated as outputs as “hidden”
gates, in analogy to the use of “hidden layers” to describe layers of nodes in neural
networks that are neither inputs nor outputs.

To determine the outputs that a network computes from a specific set of inputs
one initializes the state of all gates to false and then iteratively and synchronously
updates the state of all gates. Execution terminates when a state is repeated. If the
values of output gates have remained unchanged throughout the attractor cycle into
which the network has fallen then those values are returned as the output from the
computation. If they have changed over the course of the cycle then the output of the
computation is considered to be undefined and no value is returned.

1.4 Ratcheted Random Search

With the aim of advancing our understanding of the space of self-programming
Boolean networks, I have chosen to search for networks that solve specified problems
using extremely simple search methods.

Training cases are decomposed so that each case specifies the correct value for a
single Boolean output. This means that if a problem involves u outputs then there
will be u training cases for each collection of input values, each specifying the
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correct value of one of the outputs. For example, for the problem of finding a self-
programming Boolean network that acts as a 2-bit X 2-bit multiplier, which must take
four Boolean inputs and produce four Boolean outputs, there will be four training
cases for each product. So for 2 X3 = 6, which in binary is 10x 11 = 0110, there will
be a case specifying that the leftmost output should be 0 (false), another specifying
that the next output should be 1 (true), and so on.

All of the methods discussed here maintain an initially empty collection of solved
training cases and an initially complete collection of unsolved cases. At each step
the current network (N) is tested on a randomly chosen unsolved case (C). If N
produces the correct output for case C then C is moved from the unsolved collection
to the solved collection. On the other hand, if it produces the incorrect output then
a random change is made to N, producing N’. N’ is then tested both on C and on
all of the previously solved cases. If it produces the incorrect output for any of the
previously solved cases then the change is reverted. That is, only steps in the search
space that maintain correctness for all previously-solved cases are allowed. This
implements a “ratchet-like” mechanism that only permits changes that are neutral
or better with respect to solved cases. If N’ does still produce the correct outputs
for all previously solved cases, and if it also produces the correct output for C, then
the change is retained (N’ is used as the next N) and C is moved from the unsolved
to the solved collection. If N’ produces the correct outputs for all previously solved
cases but not for C then the question of whether to retain N or revert to N is more
complicated, as described below.

Although one might think at first that our quest for simplicity would best be served
by a search method that is somehow “purely” random, it is not clear what that could
or should mean in the context of the fact that there is no limit on network size. Most
networks sampled from a purely-random distribution will be bigger than our biggest
computers, even though many problems that we care about can probably be solved
with rather small networks. Because of this, and because we generally won’t know
in advance how many gates are required to implement a target function, the search
methods considered here all begin with a network that contains no hidden gates and
allow changes to the number of gates to be among the random changes made during
search.

Three kinds of network changes are permitted in the ratcheted random search
algorithms presented here:

» Rewire: Change the source for a single input of a single gate, arbitrarily or locally
(see below).

e Add: Add a new gate with all of its inputs set to random sources, and change one
input of one pre-existing gate to use the output of the new gate as its source.

* Delete: Delete a randomly chosen gate and randomly choose another single source
to replace all references to the deleted gate’s output.

If these kinds of changes are equally likely, and if all changes that are neutral
with respect to solved cases are retained, then networks tend to grow rapidly and
without bound at least for the problems studied here. Experiments have therefore
been conducted with three settings that help to control network growth. In one (“add
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rarely”), the probability for choosing each kind of change is altered, typically by
setting the probability of choosing Add to ﬁ the probability of choosing Rewire or
Delete. In the second (“add for improvement”) and third (“add for disruption”), the
conditions under which we retain the results of an Add are changed. Specifically,
with “add for improvement” the results of an Add are retained only if it correctly
solves not only all previously solved cases but also the current case C. In the “add for
disruption” setting. although the results of the Add needn’t correctly solve C in order
to be retained, the change must at least influence gate states during the processing
of C. These variants are of course not the only possible mechanisms for controlling
growth, but they are straightforward and not obviously biased. The first, changing
the probability for additions relative to other network modifications, seems to control
network growth reasonably well while still allowing solutions to be found in many
settings. However, the introduction of probability parameters complicates analysis.
The second approach, requiring the results of additions to solve C, has produced
among the most concise solutions in some preliminary experiments but appeared to
slow search and perhaps prevent the algorithm from ever finding solutions in some
settings. The third approach, requiring that additions at least disrupt the processing of
C, seems at the time of this writing to be the most generally promising of the variants
considered here. Although further testing of these and other variants is warranted,
we present here only results of the third approach.

Although the approaches described above help to focus search on reasonably
small networks, even modestly-sized networks have astronomically large numbers
of rewiring options. Consider a problem with i inputs, so that a network with g gates
would have i + g + 2 possible sources for each of 6g destinations. The number of
possible wirings for this network is (i + g + 2)%¢, which is over 107 for i = 5 and
g = 10, and over 10'® for i = 10 and g = 20.

Based on considerations of the vastness of this space, and on observations of
modular structure in complex systems, I have also experimented with two variants of
Rewire changes. In one (“arbitrary rewiring”), the new source for the chosen input is
picked from all possible sources, with each having equal probability. In the second
(“local rewiring”), the source is chosen with uniform probability from a collection
that contains one arbitrary source but also, if the current source is a gate rather than
a network input or constant, all sources for all inputs to that gate. Because it has
performed best in our preliminary investigations, I present here only results of runs
with local rewiring.

I make no claim that the search methods used here will be the most effective for
finding Boolean networks that solve specified problems, only that they are relatively
simple and that, if they prove to be capable of finding solutions at all, then their
simplicity may help us to understand the nature of the search space. For this reason I
have tried to rely mostly on uniform random variation and the “ratchet” mechanism
described above, making strategic modifications to this minimalist approach only to
mitigate the effects of network growth, specifically by allowing additions only if they
disrupt network dynamics and by preferring a kind of local rewiring. It may well
be that more effective methods will utilize more sophisticated techniques, possibly
based on traditional methods for digital circuit design or on work on evolvable
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hardware. For the present, however, I am aiming to deepen our understanding of the
search space by relying on ratcheted random search as much as possible.

1.5 Results

To assess the scaling behavior of our search algorithms, experiments were conducted
on search for even parity functions and multipliers, both of which have previously
been studied as targets for the learning or evolution of combinational circuits.

For even parity, I searched 100 times for solutions to each of the even-2-parity,
even-3-parity, even-4-parity and even-5-parity problems. All searches found solu-
tions, requiring the numbers of search steps shown in figure 1.5. Figure 1.6 shows
the numbers of hidden gates in solution networks in those same runs.

-10°
1 T T

0.9 —e— Mean —— Median

0.8
0.7

0.5
0.4}

Search steps

0.3

0.1

2 3 4 5

Number of input bits

Fig. 1.5 Ratcheted random search steps required to find solutions to parity problems of the specified
sizes, aggregated over 100 runs of each problem size.

Note that the number of search steps required to find a solution grows non-linearly
with problem size. This is not surprising given the exponential growth in the state
space as networks grow, but it does appear to show that more refined search methods
will be required to solve larger problems and it provides a benchmark that can be
used in experiments with such methods. The growth in the number of hidden gates
in solutions, however, appears to be more modest and approximately linear.

The search for multipliers is more challenging than the search for parity functions,
in part because each computation produces multiple output bits. The algorithm
described here can reliably find 3-bit x 3-bit multipliers, which have six input bits
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Fig. 1.6 Numbers of hidden gates in solutions to parity problems of the specified sizes, aggregated
over the same 100 runs of each problem size used for Figure 1.5.

and six output bits, but these searches take long enough that statistics over large
numbers of searches have not been gathered. That said, 3-bit X 3-bit multipliers
found by the algorithm can be interesting in structure and behavior, and one will be
presented below.

For 2-bit x 2-bit multipliers, with four input bits and four output bits, I conducted
100 searches with the same algorithm as used above. All searches succeeded, requir-
ing numbers of search steps with a mean of 16,952.51 and a median of 13, 169.5.
This means that for our algorithm finding a 2-bit X 2-bit multiplier requires roughly
twice as many search steps as needed to find an even-4-parity function, but only
roughly a quarter as many as needed to find an even-5-parity function. The mean
number of hidden gates was 2.34 and the median was 2. These numbers are lower
than those for even-4-parity, but the 2-bit X 2-bit multipliers include 4 output gates,
in comparison to the 1 output gate for even-4-parity, so the total number of gates in
2-bit x 2-bit multipliers is higher.

I will use a 2-bit X 2-bit multiplier found by our algorithm to demonstrate some of
the features of self-programming Boolean networks. A diagram of the multiplier that
I will consider is shown in Figure 1.7. Unfortunately, because of the large number
of wires and the irregular connection pattern, it is difficult to glean much about how
a network functions from diagrams such as this one, even for such a small network.
That said, it is clear from Figure 1.7 that this multiplier makes no use of the constant
true source and that all but one of its gates have self-loops, with the gate itself
serving as one of its sources. One can also get a sense of the gate efficiency of the
network by looking at it in comparison to diagrams of traditional combinational 2-bit
x 2-bit multipliers that use 8 gates.
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Fig. 1.7 A circuit diagram for a 2-bit X 2-bit multiplier found by the search algorithm presented
here.

I have found it more useful to look at networks in tabular form in conjunction
with execution traces for particular input patterns. Figure 1.8 shows such a trace for
the multiplier in Figure 1.7 when multiplying 3 x 3.

The first line of the trace shows the indices for all of the network sources. The
first two sources (with indices O and 1) are the constant false and true sources,
respectively. The next four (2, 3, 4, and 5), following an empty column, are inputs; for
this 2-bit X 2-bit multiplier the first number to be multiplied will be encoded in the
two values appearing at indices 2 and 3, while the second number to be multiplied
will be encoded in the values appearing at indices 4 and 5. The remaining indices
all refer to programmable gates, with the output gates appearing first and then, after
another empty column, any hidden gates. For all programmable gates the following
six rows show the sources for the gates’ inputs. The labels printed at the left of these
rows show which input is which, with A and B indicating the sources for the inputs
to the gate that will be programmed by the values at indices FF, FT, TF, and TT.

For example, consider the gate with index 6 in Figure 1.8. The right-most column
of the truth table for this gate will be whatever values are present at indices 6, 9, 2,
and 3. If we suppose that there are false values at indices 6, 9, and 2, and a true
value at index 3, then this will act as an AND gate on the values at indices 0 and 7.
Incidentally, in this case that would mean that we already know that the gate’s output
will be false, because the 0 index always refers to the constant false, because a
single false input is enough to guarantee a false output from an AND gate.

Starting on the eighth row of the trace in Figure 1.8, following the rows for
indices and sources of gate inputs, are rows showing the states of the network’s
sources (represented with - for false and * for true for the sake of legibility) and
the hexadecimal representations of the logic functions that each gate is programmed
by that state to perform. The first of these lines shows the network’s initial state, in
which the constant sources are - and * (as always), the four input values are all *
(because both inputs are 3, which in binary is 11), and all other gates are initialized
to false. The next line shows the programming of the gates as specified by the
initial state. Specifically, the five gates are programmed to be hexadecimal 3, 3, 6,
3, and E, which by consulting Table 1.2 we can see are A, B A —A, XOR, A, and NAND.
The following row shows the state that results from the processing of these gates, in
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which we can see that the gates at indices 7 and 9 have flipped to true. Skipping
to the bottom of the diagram we can see that the last two states are identical, which
is why the computation terminated—in this case with a cycle length of 1, although
that will not always be the case. We can also see that the values of the output gates
in the final state are true, false, false, and true, which encode 1001 which is
binary for 9, which is the correct answer for 3 x 3. We can also see that along the
way to producing this result the state at some indices changed more than once, and
several gates were repeatedly reprogrammed.

0 1 2 3 45 6 7 8 9 10
AO®O 9 3 3 4

B7 4 5 0 2

FF6 6 8 9 4

FT 9 2 2 10 5

TF 2 7 4 5 4

TT 3 0 10 4 8

3 4 6 3 E

7 6 6 B E

- * * ¥* * ¥ * - - ¥* -
F C 6 B E

* * ¥* * ¥ * ¥*

Fig. 1.8 A trace of the multiplier shown in Figure 1.7 multiplying 3 x 3. See text for description.

Figure 1.9 shows a trace of the same multiplier multiplying 1 x 0. Here we can
see that the initial gates immediately reproduce the initial state, causing immediate
termination with the correct answer of 0. This illustrates the fact that a network may
take different number of steps to produce a result for different inputs.

0 1 2 3 45 6 7 8 9 10
AO® 9 3 3 4

B7 4 5 0 2

FF6 6 8 9 4

FT 9 2 2 10 5

TF 2 7 4 5 4

TT 3 0 10 4 8

0 0 0

Fig. 1.9 A trace of the multiplier shown in Figure 1.7 multiplying 1 x 0. See text for description.

Figure 1.10 shows a trace of a network that our algorithm found for a 3-bit x 3-bit
multiplier, shown multiplying 7 X 5. Again we can see that the network is reasonably
space efficient, using 17 programmable gates in comparison to the 40 gates used in
a traditional combinational 3-bit X 3-bit multiplier. That said, networks that use as
few as 15 programmable gates have also been found. We can also see again a variety
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of interesting structures, including self loops, and the reprogramming of gates over
the course of the computation.

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A23182 136 16 7 5 0 153 221 4 211 19

B5 5 1223182 5 132 8 3 20147 12153

FF 23 23 15 14 12 0 7 154 6 0 6 17122 0 2

FT 23 22 10 20 7 7 213 2121214 1 7 21146

TF 5 14 17 14 4 7 2 3 185 17136 1 223 7

TT 2 19 17 14 21 0 16 24 23 16 23 13 0 21 2 6 2

- ¥* * * ¥ % - * - - - - - - - - - - - - - - - - -
3 0 0 0 6 6 A 6 8 2 4 4 6 9 2 B

F C 8 06 6 6 A E 9 2 17 4 6 B 2 B

- * * * ¥* £ - * % £ - - - * - - — * * ¥ - - ¥ - -
3 53 0 6 6 A 6 A 2 2 7 C 6 B 2 B

F D 4 0 E 6 A7 9 2 17 4 E B 2 B

F 9 8 0 E 6 A F B 2 17 4 E 9 2 B

- * 3 * * - * * * - - * * - * - - * - - - - - *
3 0 8 0 E 6 A F A 2 0 7 4 E 9 2 B

3 0 8 0 E 6 A E 8 2 0 7 4 E 9 2 B

- ¥ * * ¥ % - * - - - - ¥* * - - - * - - - - - - -
3 0 3 0 E 6 A 6 8 2 2 7 CE 9 2 B
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Fig. 1.10 A trace of the 3-bit X 3-bit multiplier found by our algorithm, shown multiplying 7 x 5
to produce 35.

1.6 Conclusions and Next Steps

The material presented here provides conventions and baselines for studying the use
of self-programming Boolean networks as a substrate for computational systems that
adapt to solve specified problems. That said, it can be seen to raise more questions
than it answers, and to provide several avenues for further research.

What has been demonstrated so far is that simple random search methods can
indeed find self-programming Boolean networks that solve specified problems. The
problems studied here, while modest in difficulty, do nonetheless involve astronom-
ically large search spaces. The methods employed combine random walks with a
ratchet-like mechanism that prevents the loss of function during search. The problem-
solving networks that have been found are often parsimonious in their use of gates and
employ feedback and context-dependent execution dynamics in novel and interesting
ways.

Many open questions were raised in the development of this work, and more
were raised in discussions at the 2024 Genetic Programming Theory and Practice
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workshop.? Some of these concern the execution mechanics of individual networks;
for example, one can ask whether it would be helpful to initialize networks differently,
to terminate execution under different conditions, or to extract outputs even when the
output gates are not all stable over the attractor cycle. Others concern the distribution
of random moves that are considered during search, asking for example whether
search will be more efficient if different probabilities of change are applied to data
inputs (A and B) than to programming inputs (FF, FT, TF, and TT). A variety of
other analyses of the experimental data may also be revealing, ranging from analysis
of variance of the measures that have already been presented to the calculation
of measures of chaotic dynamics. Additional control experiments might also be
conducted, for example with the ratchet mechanism disabled or with programming
inputs wired only to constants. The effects of other constraints on wiring patterns,
such as restriction to a 3D lattice, might also be considered. Comparisons and/or
synergies with other work on search for executable networks might be explored, for
example with recurrent Cartesian genetic programming [17] or Markov Brains [6].
Finally, it would be interesting to examine this work in the context of studies of other
computational substrates that involve complex underlying dynamics, for example
with physical reservoir computing [14].
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